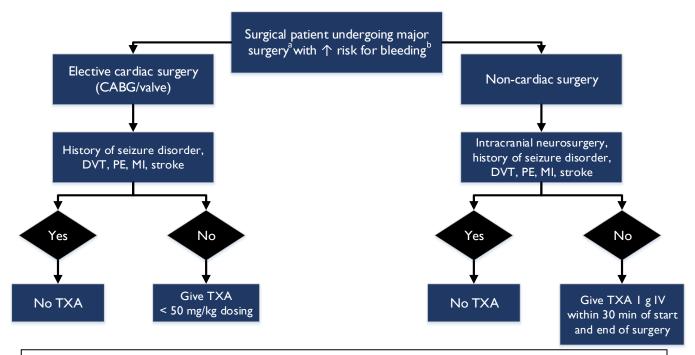

Impede the Bleed: Tranexamic Acid for Surgical and Traumatic Bleeds Lauren Busch, PharmD PGY1 Pharmacy Resident Barnes-Jewish Hospital December 15, 2022

Learning Objectives:

- 1. Describe the risks and benefits of tranexamic acid (TXA) use in trauma and surgical patients
- 2. Explain the clinical controversies and unanswered questions behind the use of TXA


TXA Traumatic Bleed Algorithm and Controversies:¹⁻⁴

Controversy	CRASH-2 Trial	MATTERS Trial	CRASH-3 Trial
Dose and Frequency	I g IV then I g IV over 8 hrs	Mean (SD) dose: 2.3 (1.3) g	I g IV then I g IV over 8 hrs
Timing	≤3 hrs: benefit >3 hrs: risk 32.7% received within 1 hr		≤3 hrs: benefit in GCS 9-15 >3 hrs: no ↑ mortality
Mortality Benefit	Yes	Yes	Head injury-related death if mild/moderate GCS
Bleeding/ Transfusions	↓ death due to bleeding, but no difference in transfusion	↑ transfusions in TXA group (more severely injured)	-
Seizures/ Thrombosis	Seizures not assessed/ No difference in MI/stroke/PE	Seizures not assessed/ ↑ VTE	Seizures/thrombosis outcomes not powered
Quality of Evidence:	Low quality of evidence	1oderate quality of evidence	High quality of evidence

Abbreviations: IV: intravenous; SD: standard deviation; GCS: Glasgow Coma Scale; MI: myocardial infarction, PE: pulmonary embolism; VTE: venous thromboembolism; TBI: traumatic brain injury; DVT: deep vein thrombosis

TXA Surgical Bleed Algorithm and Controversies:⁵⁻⁸

^aMajor surgery: cardiac, intraperitoneal, intrathoracic, retroperitoneal, or major orthopedic surgery (hip arthroplasty, internal fixation of hip or femur, pelvic arthroplasty, knee arthroplasty, above-knee amputation, or amputation below the knee but above the foot)

^bRisk for bleeding: >70 years old, female, use of low-molecular weight heparin/antiplatelet drug <5 days before surgery, renal impairment (eGFR, <60 ml/min), insulin-dependent diabetes, liver disease, prior major bleeding or hemophilia, uncontrolled hypertension (systolic blood pressure >160 mmHg)

Controversy	Cochrane Review	Cochrane Review	ATACAS Trial	POISE-3 Trial
	Non-Urgent	Urgent	Cardiac	Non-cardiac
Dose and	Dosing varied between	10-15 mg/kg bolus +/-	Not to exceed	I g IV bolus
Frequency	trials	second dose	50 mg/kg	
Timing			>30 min after start of anesthesia	Start and end of surgery
Mortality	No benefit	No benefit	No benefit/mortality	↓ death by bleeding,
Benefit		(Wide Cl)	not ↑	not all-cause
Bleeding/	↓ bleeding (414 mL) ~1	↓ transfusions	↓ reoperation; ~ I	↓ major bleeding
Transfusions	unit/patient saved	(uncertain volume)	unit/patient saved	↓ ≥ <u>1 unit pRBCs</u>
Seizures/ Thrombosis	Seizures not assessed; No difference in MI/stroke/VTE	Seizures not assessed; uncertain MI/stroke/VTE risk	↑ seizures; no ↑ MI/stroke/PE	Thrombosis: not noninferior, seizures uncertain (Wide CI)
Quality of Evidence: Low quality of evid		dence Moderate qua	ality of evidence Hig	h quality of evidence

Abbreviations: IV: intravenous; CI: confidence interval; pRBC: packed red blood cell; MI: myocardial infarction; VTE: venous thromboembolism; CABG: coronary artery bypass; DVT: deep vein thrombosis; PE: pulmonary embolism; GCS: Glasgow Coma Scale

Appendix:

- Injury Severity Score (ISS):⁹
 - o ISS is a score that describes severity of traumatic injury in literature
 - ISS is the sum of the squares of the three most severely injured body region AIS values
 - \circ ISS ranges 1-75, with a higher ISS indicating a higher severity of injury and mortality risk
- Abbreviated Injury Scale (AIS):¹⁰
 - \circ $\;$ The AIS describes the severity of injury of each body region
 - There are nine body regions that are grouped into six to calculate the ISS: head or neck, face, chest, abdominal or pelvic contents, extremities or pelvic girdle, and external
 - \circ $\;$ AIS ranges from 1-6 for each body region, with AIS of 6 being maximum injury $\;$
 - \circ If a single body region has an AIS of 6, an ISS of 75 is automatically assigned
- Glasgow Coma Score (GCS):¹¹
 - o GCS is an assessment of level of consciousness and is used to describe severity of injury
 - GCS is the sum of the Glasgow Coma Scale results: eye opening (1-4), verbal response (1-5), best motor response (1-6)
 - GCS ranges from 3-15: severe injury (3-8), moderate injury (9-12), mild injury (13-15)
- Trial definitions:
 - ATACAS risk of major complications: age ≥70, left ventricular impairment (fractional area change <20%, ejection fraction <40%, or at least moderate impairment on ventriculography), concomitant valvular or aortic surgery, left ventricular aneurysmectomy, repeat cardiac surgery, COPD, renal impairment <45 ml/min, obesity (BMI >25), pulmonary htn (mPAP >25), peripheral vascular disease
 - POISE-3 major bleeding: bleeding that resulted in a postoperative hemoglobin ≤7 g/dL; a transfusion of ≥1 unit of red blood cells; or led to an intervention

References:

- 1. CRASH-2 trial collaborators, Shakur H, Roberts I, et al. Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial. *Lancet*. 2010;376(9734):23-32.
- CRASH-2 collaborators, Roberts I, Shakur H, et al. The importance of early treatment with tranexamic acid in bleeding trauma patients: an exploratory analysis of the CRASH-2 randomised controlled trial. *Lancet*. 2011;377(9771):1096-1101.e11012.
- 3. Morrison JJ, Dubose JJ, Rasmussen TE, Midwinter MJ. Military Application of Tranexamic Acid in Trauma Emergency Resuscitation (MATTERs) Study. *Arch Surg.* 2012;147(2):113-119.
- 4. CRASH-3 trial collaborators. Effects of tranexamic acid on death, disability, vascular occlusive events and other morbidities in patients with acute traumatic brain injury (CRASH-3): a randomised, placebo-controlled trial [published correction appears in Lancet. 2019 Nov 9;394(10210):1712]. *Lancet*. 2019;394(10210):1713-1723.
- 5. Henry DA, Carless PA, Moxey AJ, et al. Anti-fibrinolytic use for minimising perioperative allogeneic blood transfusion. *Cochrane Database Syst Rev.* 2011;2011(3):CD001886. Published 2011 Mar 16.
- 6. Perel P, Ker K, Morales Uribe CH, Roberts I. Tranexamic acid for reducing mortality in emergency and urgent surgery. *Cochrane Database Syst Rev.* 2013;2013(1):CD010245. Published 2013 Jan 31.
- 7. Myles PS, Smith JA, Forbes A, et al. Tranexamic Acid in Patients Undergoing Coronary-Artery Surgery [published correction appears in N Engl J Med. 2018 Feb 22;378(8):782]. *N Engl J Med*. 2017;376(2):136-148.
- 8. Devereaux PJ, Marcucci M, Painter TW, et al. Tranexamic Acid in Patients Undergoing Noncardiac Surgery. *N Engl J Med*. 2022;386(21):1986-1997.
- 9. Baker SP, O'Neill B. The injury severity score: an update. *J Trauma*. 1976;16(11):882-885.
- 10. Stevenson M, Segui-Gomez M, Lescohier I, Di Scala C, McDonald-Smith G. An overview of the injury severity score and the new injury severity score. *Inj Prev*. 2001;7(1):10-13.
- 11. Teasdale G, Maas A, Lecky F, Manley G, Stocchetti N, Murray G. The Glasgow Coma Scale at 40 years: standing the test of time [published correction appears in Lancet Neurol. 2014 Sep;13(9):863]. *Lancet Neurol.* 2014;13(8):844-854.